SINAR UV VIS

A.  PENGERTIAN
SINAR INFRA MERAH

Infra merah (infra red) ialah cahaya yang tidak tampak dan memiliki panjang gelombangnya lebih daripada cahaya nampak yaitu di antara 700 nm dan 1 mm.  Jika dilihat dengan dengan spektroskop cahaya maka radiasi cahaya infra merah akan nampak pada spectrum elektromagnet dengan panjang gelombang di atas panjang gelombang cahaya merah. Cahaya infra merah memang tidak dapat dilihat mata telanjang namun radiasi panasnya dapat kita rasakan.  Infra merah dapat dibedakan menjadi tiga daerah yakni:

  • Near Infra Merah………………0.75 – 1.5 µm
  • Mid Infra Merah..………………1.50 – 10 µm
  • Far Infra Merah……………….10 – 100 µm

SINAR ULTRAVIOLET

Ultraviolet (UV) cahaya adalah radiasi elektromagnetik dengan panjang gelombang lebih pendek daripada cahaya tampak, tetapi lebih lama dari x-ray, dalam kisaran 10 nm sampai 400 nm, dan energi dari 3 eV ke 124 eV.   Dinamakan demikian karena spektrum terdiri dari gelombang elektromagnetik dengan frekuensi yang lebih tinggi daripada manusia mengidentifikasi sebagai warna ungu.

Sinar UV ditemukan di sinar matahari dan dipancarkan oleh busur listrik dan lampu khusus seperti lampu hitam.  Sebagai radiasi pengion dapat menyebabkan reaksi kimia, dan menyebabkan banyak zat bersinar atau fluoresce. Kebanyakan orang sadar akan efek UV melalui kondisi menyakitkan terbakar sinar matahari, tetapi spektrum UV memiliki banyak efek lain, baik menguntungkan dan merusak, terhadap kesehatan manusia.

SINAR TAMPAK

Spektrum optik (cahaya atau spektrum terlihat atau spektrum tampak) adalah bagian dari spektrum elektromagnetik yang tampak oleh mata manusia. Radiasi elektromagnetik dalam rentang panjang gelombang ini disebut sebagai cahaya tampak atau cahaya saja. Tidak ada batasan yang tepat dari spektrum optik; mata normal manusia akan dapat menerima panjang gelombang dari 400 sampai 700 nm, meskipun beberapa orang dapat menerima panjang gelombang dari 380 sampai 780 nm (atau dalam frekuensi 790-400 terahertz). Mata yang telah beradaptasi dengan cahaya biasanya memiliki sensitivitas maksimum di sekitar 555 nm, di wilayah hijau dari spektrum optik. Warna pencampuran seperti pink atau ungu, tidak terdapat dalam spektrum ini karena warna-warna tersebut hanya akan didapatkan dengan mencampurkan beberapa panjang gelombang.

Panjang gelombang yang kasat mata didefinisikan oleh jangkauan spektral jendela optik, wilayah spektrum elektromagnetik yang melewati atmosfer Bumi hampir tanpa mengalami pengurangan intensitas atau sangat sedikit sekali (meskipun cahaya biru dipencarkan lebih banyak dari cahaya merah, salah satu alasan menggapai langit berwarna biru). Radiasi elektromagnetik di luar jangkauan panjang gelombang optik, atau jendela transmisi lainnya, hampir seluruhnya diserap oleh atmosfer. Dikatakan jendela optik karena manusia tidak bisa menjangkau wilayah di luar spektrum optik. Inframerah terletak sedikit di luar jendela optik, namun tidak dapat dilihat oleh mata manusia.

Banyak spesies yang dapat melihat panjang gelombang di luar jendela optik. Lebah dan serangga lainnya dapat melihat cahaya ultraviolet, yang membantu mereka mencari nektar di bunga. Spesies tanaman bergantung pada penyerbukan yang dilakukan oleh serangga sehingga yang berkontribusi besar pada keberhasilan reproduksi mereka adalah keberadaan cahaya ultraviolet, bukan warna yang bunga perlihatkan kepada manusia. Burung juga dapat melihat ultraviolet (300-400 nm).

B.  APLIKASI

Spektrofotometri terdiri dari beberapa jenis berdasar sumber cahaya yang digunakan. Diantaranya adalah sebagai berikut:

1. Spektrofotometri Vis (Visible)

2. Spektrofotometri UV (Ultra Violet)

3. Spektrofotometri UV-Vis

4. Spektrofotometri IR (Infra Red)

1. Spektrofotometri Visible (Spektro Vis)

Pada spektrofotometri ini yang digunakan sebagai sumber sinar/energi adalah cahaya tampak (visible). Cahaya visible termasuk spektrum elektromagnetik yang dapat ditangkap oleh mata manusia. Panjang gelombang sinar tampak adalah 380 sampai 750 nm. Sehingga semua sinar yang dapat dilihat oleh kita, entah itu putih, merah, biru, hijau, apapun.. selama ia dapat dilihat oleh mata, maka sinar tersebut termasuk ke dalam sinar tampak (visible).

Sumber sinar tampak yang umumnya dipakai pada spektro visible adalah lampu Tungsten. Tungsten yang dikenal juga dengan nama Wolfram merupakan unsur kimia dengan simbol W dan no atom 74. Tungsten mempunyai titik didih yang tertinggi (3422 ºC) dibanding logam lainnya. karena sifat inilah maka ia digunakan sebagai sumber lampu  Sample yang dapat dianalisa dengan metode ini hanya sample yang memilii warna. Hal ini menjadi kelemahan tersendiri dari metode spektrofotometri visible.  Oleh karena itu, untuk sample yang tidak memiliki warna harus terlebih dulu dibuat berwarna dengan menggunakan reagent spesifik yang akan menghasilkan senyawa berwarna. Reagent yang digunakan harus betul-betul spesifik hanya bereaksi dengan analat yang akan dianalisa. Selain itu juga produk senyawa berwarna yang dihasilkan harus benar-benar stabil.
Salah satu contohnya adalah pada analisa kadar protein terlarut (soluble protein). Protein terlarut dalam larutan tidak memiliki warna. Oleh karena itu, larutan ini harus dibuat berwarna agar dapat dianalisa. Reagent yang biasa digunakan adalah reagent Folin.

Saat protein terlarut direaksikan dengan Folin dalam suasana sedikit basa, ikatan peptide pada protein akan membentuk senyawa kompleks yang berwarna biru yang dapat dideteksi pada panjang gelombang sekitar 578 nm. Semakin tinggi intensitas warna biru menandakan banyaknya senyawa kompleks yang terbentuk yang berarti semakin besar konsentrasi protein terlarut dalam sample.

2. Spektrofotometri UV (ultraviolet)

Berbeda dengan spektrofotometri visible, pada spektrofotometri UV berdasarkan interaksi sample dengan sinar UV. Sinar UV memiliki panjang gelombang 190-380 nm. Sebagai sumber sinar dapat digunakan lampu deuterium.

Deuterium disebut juga heavy hidrogen. Dia merupakan isotop hidrogen yang stabil yang terdapat berlimpah di laut dan daratan. Inti atom deuterium mempunyai satu proton dan satu neutron, sementara hidrogen hanya memiliki satu proton dan tidak memiliki neutron. Nama deuterium diambil dari bahasa Yunani, deuteros, yang berarti ‘dua’, mengacu pada intinya yang memiliki dua pertikel.  Karena sinar UV tidak dapat dideteksi oleh mata kita, maka senyawa yang dapat menyerap sinar ini terkadang merupakan senyawa yang tidak memiliki warna. Bening dan transparan.
Oleh karena itu, sample tidak berwarna tidak perlu dibuat berwarna dengan penambahan reagent tertentu. Bahkan sample dapat langsung dianalisa meskipun tanpa preparasi. Namun perlu diingat, sample keruh tetap harus dibuat jernih dengan filtrasi atau centrifugasi. Prinsip dasar pada spektrofotometri adalah sample harus jernih dan larut sempurna. Tidak ada partikel koloid apalagi suspensi.  Sebagai contoh pada analisa protein terlarut (soluble protein). Jika menggunakan spektrofotometri visible, sample terlebih dulu dibuat berwarna dengan reagent Folin, maka bila menggunakan spektrofotometri UV, sample dapat langsung dianalisa.
Ikatan peptide pada protein terlarut akan menyerap sinar UV pada panjang gelombang sekitar 280 nm. Sehingga semakin banyak sinar yang diserap sample (Absorbansi tinggi), maka konsentrasi protein terlarut semakin besar.  Spektrofotometri UV memang lebih simple dan mudah dibanding spektrofotometri visible, terutama pada bagian preparasi sample. Namun harus hati-hati juga, karena banyak kemungkinan terjadi interferensi dari senyawa lain selain analat yang juga menyerap pada panjang gelombang UV. Hal ini berpotensi menimbulkan bias pada hasil analisa.

3. Spektrofotometri UV-Vis
Spektrofotometri ini merupakan gabungan antara spektrofotometri UV dan Visible. Menggunakan dua buah sumber cahaya berbeda, sumber cahaya UV dan sumber cahaya visible. Meskipun untuk alat yang lebih canggih sudah menggunakan hanya satu sumber sinar sebagai sumber UV dan Vis, yaitu photodiode yang dilengkapi dengan monokromator.
Untuk sistem spektrofotometri, UV-Vis paling banyak tersedia dan paling populer digunakan.  Kemudahan metode ini adalah dapat digunakan baik untuk sample berwarna juga untuk sample tak berwarna.

4. Spektrofotometri IR (Infra Red)

Dari namanya sudah bisa dimengerti bahwa spektrofotometri ini berdasar pada penyerapan panjang gelombang infra merah. Cahaya infra merah terbagi menjadi infra merah dekat, pertengahan, dan jauh. Infra merah pada spektrofotometri adalah infra merah jauh dan pertengahan yang mempunyai panjang gelombang 2.5-1000 μm.

Pada spektro IR meskipun bisa digunakan untuk analisa kuantitatif, namun biasanya lebih kepada analisa kualitatif. Umumnya spektro IR digunakan untuk mengidentifikasi gugus fungsi pada suatu senyawa, terutama senyawa organik. Setiap serapan pada panjang gelombang tertentu menggambarkan adanya suatu gugus fungsi spesifik.

Hasil analisa biasanya berupa signal kromatogram hubungan intensitas IR terhadap panjang gelombang. Untuk identifikasi, signal sample akan dibandingkan dengan signal standard. Perlu juga diketahui bahwa sample untuk metode ini harus dalam bentuk murni. Karena bila tidak, gangguan dari gugus fungsi kontaminan akan mengganggu signal kurva yang diperoleh.  Terdapat juga satu jenis spektrofotometri IR lainnya yang berdasar pada penyerapan sinar IR pendek. Spektrofotometri ini di sebut Near Infrared Spectropgotometry (NIR). Aplikasi NIR banyak digunakan pada industri pakan dan pangan guna analisa bahan baku yang bersifat rutin dan cepat.

Pembuatan Semen

Menurut Austin (1984), dalam proses produksi semen, saat ini dikenal 4 (empat) macam proses pembuatan semen yaitu:

1.      Proses Basah

Proses pengolahan material basah:

a.       Tanah liat yang diambil langsung dari alam, campukan dengan air dan diaduk hingga menjadi bubur dalam bak cuci yang terbuat dari beton.

b.      Selama pengadukan, semua kotoran seperti akar tumbuhan, pasir dan kerikil dipisahkan.

c.       Lumpur Tanah liat yang bersih dipindahkan bejana, dengan cara di pompa sembari jumlah kadar airnya di kurangi.

d.      Batu kapur  dari alam di tumbuk halus hingga dapat menembus saringan 90 micron. Penggilingan dimulai dari penggilingan kasar yang menggunakan Jaw Crusher, hingga penggilingan halus yang menggunakan Roll Crusher. Kemudian dicampurkan air hingga menjadi lumpur batu kapur.

Proses pembakaran, setelah lumpur tanah liat dan lumpur kapur jadi. Masukkan kedalam silo atau tungku bakar yang memiliki ukuran 150 M. tungku ini memiliki ruang-ruang sebagai berikut:

  • Ruang paling ujung merupakan ruang yang dinding-dinding ruangnya dilengkapi dengan sirip-sirip baja tipis untuk memperluas penguapan.
  • Ruang berikutnya, dinding tungku terdapat rantai baja. Dengan adanya ratai ini penguapan air semakin sempurna, serta gumpalan-gumpalan lumpur kering pecah.
  • Bahan yang telah diolah tadi kemudian dipanaskan lagi dengan suhu 500-900oC. Pada tahap ini  akan terjadi penguapan air kristal yang terdapat dalam partikel bahan olahan tadi, dan juga CO2, SO3 dan senyawa lainya ikut menguap sedangkan bahan organik lainya akan terbakar.
  • Kemudian bahan tesebut akan mengalir keruang pembakaran yang suhunya berkisar 900-1350 oC

Dalam ruang pembakaran (Firing zone) senyawa oksida mulai beraksi satu dengan yang lain, untuk membentuk senyawa semen (C3S, C2S, C3A, dan C4AF), kemudian menggumpal dalam keadaan setengah meleleh yang disebut klinker.

Klinker yang panas, kemudian dimasukkan keruangan pendingin dengan suhu biasa agar klinker cepat dingin. Keluar dari ruang pendingin biasanya suhu klinker ± 30 oC kemudian agar cukup dingin.

Penggilingan klinker biasanya merupakan siklus yang tertutup (Close circuit). Hasil gilingan diayak 170 mesh (90 micron), yang masih kasar masuk kembali ke ball mill dan semen bubuk dapat dipasarkan.

2.      Proses Semi Basah

Pada proses ini penyediaan umpan tanur hampir sama dengan proses basah, namun umpan tanur yang akan diberikan, disaring terlebih dahulu dengan press filter. Filter cake dengan kadar 15 – 25% digunakan sebagai umpan tanur. Konsumsi panas yang digunakan pada proses ini cukup besar sekitar 1000 – 1200 Kcal/Kg klinker. Proses ini jarang digunakan karena biaya produksinya yang terlalu besar dan kurang menguntungkan.

3.      Proses Semi Kering

Proses ini dikenal dengan nama grate process yang merupakan transisi antara proses basah dan kering. Pada proses ini umpan tanur disemprot air dengan alat yang bernama granulator (pelletizer) untuk mengubah umpan tanur menjadi granular atau nodule dengan kandungan air 10 – 12% dan ukurannya 10 -12 mm seragam. Proses ini menggunakan tungku tegak (shaft kiln) atau long rotary kiln. Konsumsi panas untuk proses ini sebesar 1000 Kcal/Kg klinker.

4.      Proses Kering.

Pada proses ini bahan baku dihancurkan di dalam raw mill dalam keadaan kering dan halus. Untuk menunjang proses pengeringan di raw mill maka udara panas sebagai media pengering dialirkan dari tanur putar. Kemudian hasil penggilingan raw mill tersebut yang berkadar air 0,5 – 1% dikalsinasikan di dalam tanur putar. Konsumsi panas di rotary kiln yang dibutuhkan yaitu 900 – 700 Kcal/Kg klinker.  Hasil pembakaran di tanur putar berupa butiran hitam yang disebut terak / klinker. Kemudian terak / klinker tersebut digiling di finish mill dengan menambahkan gipsum pada perbandingan tertentu untuk membentuk semen. Proses kering ini menawarkan banyak keuntungan yaitu: tanur putar yang digunakan relatif pendek, kapasitas produksi lebih besar, konsumsi panas yang digunakan relatif rendah sehingga konsumsi bahan bakar rendah, sehingga menjadikan proses kering ini pilihan banyak produsen semen dalam proses pembuatan semennya.

pembuatan bahan gelas dan kaca

  1. I.            Bahan baku pembuatan gelas

Pada dasarnya, bahan baku pembuatan gelas terdiri atas 3 jenis yang masing-masing memiliki peranan pada kualitas dan hasil akhir dari produk gelas secara keseluruhan. Keempat bagian tersebut yaitu :

  1. Bahan pembentuk gelas. Bahan baku jenis ini terdiri dari :
    1. Pasir kuarsa/silika dengan kemurnian SiO2  99.1 – 99.7%
    2. Sodium karbonat/soda abu (Na2CO3)
    3. Asam borat/borax
    4. Phosfor pentaoksida
    5. Dolomit (CaCO3.MgCO3)
    6. Feldspar, dengan rumus molekul R2O.Al2O3.6SiO2 di mana R2O mewakili Na2O atau K2O atau gabungan keduanya.
    7. Cullet, merupakan pecahan-pecahan kaca atau kaca yang berasal dari produk tak lolos quality control. Cullet berfungsi untuk menurunkan temperatur leleh dari bahan baku. Cullet yang diumpankan sebanyak 25% dari total bahan baku.
    8. Bahan stabiliser, merupakan bahan yang mampu menurunkan kelarutan di dalam air, tahan terhadap serangan bahan kimia lain termasuk materi-materi lain yang terdapat di atmosfer. Contoh bahan stabiliser yang biasa dipakai di industri gelas adalah
      1. kalsium karbonat, membuat produk akhir menjadi tidak larut di dalam air.
      2. barium karbonat, meningkatkan berat spesifik dan indeks bias.
      3. timbal oksida, membuat produk menjadi transparan, mengkilat, dan memiliki indeks bias yang tinggi.
      4. seng oksida, membuat gelas tahan terhadap panas yang mendadak, memperbaiki sifat-sifat fisik dan mekanik, dan meningkatkan indeks bias.
      5. aluminium oksida, meningkatkan viskositas gelas, kekuatan fisik, dan ketahahan terhadap bahan kimia.
  1. Komponen sekunder, di antaranya adalah :
    1. Refining agent, menghilangkan gelembung-gelembung gas pada saat pelelehan bahan baku. Bahan  yang biasa digunakan sebagai refining agent pada industri gelas adalah sodium nitrat dan sodium sulfat atau arsen oksida (As2O3).
    2. Penghilang warna (decolorant), menghilangkan warna yang biasanya diakibatkan oleh kehadiran senyawa besi oksida yang masuk bersama bahan baku. Bahan penghilang warna yang digunakan adalah mangan dioksida (MnO2), logam selenium (Se), atau nikel oksida (NiO).
    3. Pewarna (colorant), digunakan untuk membuat gelas khusus sesuai dengan warna yang dikehendaki.
    4. Opacifiers. Bahan yang digunakan sebagai opacifier adalah fluorite (CaF2), kriolit (Na3AlF6), sodium fluorosilika (Na2SiF6), timah phospat, seng phospat (Zn3(PO4)2), dan kalsium phospat (Ca3(PO4)2).
  1. II.            Proses pembuatan gelas

Proses pembuatan gelas di dalam industri meliputi tahap-tahap sebagai berikut:

  1. Persiapan bahan baku (batching)

Pada tahap ini dilakukan penggilingan, pengayakan bahan baku serta pemisahan dari pengotor-pengotornya. Serbuk bahan baku ditimbang sesuai komposisi, termasuk bahan-bahan aditif lain yang diperlukan seperti zat pewarna atau zat-zat sesuai dengan produk kaca yang dikendaki. Pengadukan campuran bahan baku dalam suatu mixer dilakukan agar campuran menjadi homogen sebelum dicairkan.

  1. Pencairan (melting/fusing)

Bahan baku yang sudah homogen, diayak dahulu sebelum dimasukkan ke dalam tungku (furnace) bersuhu sekitar 1500oC sehingga campuran akan mencair. Selama proses pencairan, masing-masing bahan baku akan saling berinteraksi membentuk reaksi-reaksi kimia berikut :

Reaksi-reaksi penguraian :

Na2SO3  �   Na2O  +  CO2                                                    ….. (1)
CaCO3  �  CaO  +  CO2                                                       ….. (2)
Na2SO4  �  Na2O  +  SO2                                                     ….. (3)
MgCO3.CaCO3  �  MgO  +  CaO  + 2CO2                           ….. (4)
Reaksi antara SiO2  dengan Na2CO3 pada suhu 630 – 780oC

Na2CO3  +  aSiO2  �  Na2O.aSiO2  +  CO2                                                  ….. (5)

Reaksi antara SiO2  dengan CaCO3 pada suhu 600oC

CaCO3  +  bSiO2  �  CaO.bSiO2  +  CO2                              ….. (6)
Reaksi antara CaCO3  dengan Na2CO3 pada suhu di bawah 600oC

CaCO3  +  Na2CO3   �  Na2Ca(CO3)2                                                                              ….. (7)

Reaksi antara Na2SO4 dengan SiO2 pada suhu 884oC

Na2SO4  +  nSiO2  �  NaO.nSiO2  +  SO2  +  0.5O2                                     ….. (8)

Reaksi utama

aSiO2 + bNa2O + cCaO + dMgO  �  aSiO2.bNa2O.cCaO.dMgO          ….. (9)
 
Tungku sebagai tempat mencairkan campuran bahan baku kaca, terbagi menjadi 3 jenis, yaitu :

  1. Pot furnace, biasanya dipakai untuk menghasilkan kaca-kaca khusus (special glass) seperti kaca seni, kaca optik dengan skala produksi yang kecil sekitar 2 ton atau lebih rendah. Pot terbuat dari bata silica-alumina (lempung) khusus atau platina.
  2. Tank furnace, digunakan pada industri gelas skala besar dan terbuat dari bata refraktori (bata tahan panas). Furnace ini mampu menampung sekitar 1350 ton cairan gelas yang membentuk kolam di jantung furnace.
  3. Regenerative furnace
  1. Pembentukan (forming/shaping)

Bahan kaca yang berbentuk cair lalu dialirkan ke dalam alat-alat yang berfungsi untuk membentuk kaca padat sesuai yang diinginkan. Ada beberapa jenis proses pembentukkan kaca, di antaranya adalah :

  1. Proses Fourcault.

Bahan cair dialirkan secara vertikal ke atas melalui sebuah bagian yang dinamakan “debiteuse”. Bagian ini terapung di permukaan kaca cair dengan celah sesuai dengan ketebalan kaca yang diinginkan. Di atas debiteuse terdapat bagian sirkulasi air pendingin yang akan mendinginkan kaca hingga 650 – 670oC. Pada suhu tersebut kaca berubah menjadi pelat padat dan akan bergerak dengan didukung oleh roda pemutar (roller) yang menarik kaca tersebut ke atas. Gambar di bawah ini melukiskan skema proses Fourcault.

  1. Proses Colburn (Libbey-Owens)

Jika proses Fourcault , gerakan kaca berlangsung secara vertikal, maka pada proses Colburn kaca akan bergerak secara vertical kemudian diikuti gerakan horizontal setelah melewati roda-roda penjepit yang membentuk leburan gelas menjadi lembaran-lembaran.

  1. Proses Pilkington (float process)

Bahan cair dialirkan ke dalam sebuah kolam berisi cairan timah (Sn) panas. Kecepatan aliran bahan cair ini merupakan pengatur tebal tipisnya kaca lembaran yang akan diproses. Kaca akan mengapung di atas cairan timah karena perbedaan densitas di antara keduanya. Kaca ini tetap berupa cairan dengan pasokan panas yang berasal dari pembakar di bagian atas kolam. Pengendalian temperatur di dalam kolam dilakukan agar kaca tetap rata di kedua sisinya serta pararel. Bahan yang biaanya digunakan untuk keperluan ini adalah gas nitrogen murni. Selanjutnya, aliran kaca melewati daerah pendinginan (masih di dalam kolam) dan keluar dalam bentuk kaca lembaran bersuhu �600oC. Proses a – c di atas dikenal dengan proses mekanik.

 

  1. Proses tiup (blow)

Proses ini digunakan untuk membuat botol kaca, gelas kemasan, atau aneka bentuk kaca seni lainnya (lihat gambar 6.7.).

  1. 1.        Annealing

Fungsi tahapan ini adalah untuk mencegah timbulnya tegangan-tegangan antar molekul pada kaca yang tidak merata sehingga dapat menimbulkan kepecahan. Proses annealing kaca terdiri dari 2 aktivitas, yaitu :

(1)       menahan kaca dengan waktu yang cukup di atas temperatur kritik tertentu untuk menurunkan regangan internal,

(2)       mendinginkan kaca sampai temperatur ruang secara perlahan-lahan untuk menahan regangan sampai titik maksimumnya

Proses ini berlangsung di dalam “annealing lehr”. Untuk jenis kaca lembaran, annealing lehr ini dilewati oleh kaca-kaca yang bergerak di atas roda berjalan

  1. 2.        Finishing dan pengendalian kualitas (Quality Control)

Beberapa proses penyelesaian akhir pada industri gelas adalah cleaning and polishing, cutting, enameling, dan grading.

X-Ray Diffraction

PRINSIP DASAR SPEKSTROSKOPI DIFRAKSI SINAR X

Spektroskopi difraksi sinar-X (X-ray difraction/XRD) merupakan salah satu metoda karakterisasi material yang paling tua dan paling sering digunakan hingga sekarang. Teknik ini digunakan untuk mengidentifikasi fasa kristalin dalam material dengan cara menentukan parameter struktur kisi serta untuk mendapatkan ukuran partikel.

Difraksi sinar-X terjadi pada hamburan elastis foton-foton sinar-X oleh atom dalam sebuah kisi periodik. Hamburan monokromatis sinar-X dalam fasa tersebut memberikan interferensi yang konstruktif. Dasar dari penggunaan difraksi sinar-X untuk mempelajari kisi kristal adalah berdasarkan persamaan Bragg:

n.λ = 2.d.sin θ ; n = 1,2,…

Dengan λ adalah panjang gelombang sinar-X yang digunakan, d adalah jarak antara dua bidang kisi, θ adalah sudut antara sinar datang dengan bidang normal, dan n adalah bilangan bulat yang disebut sebagai orde pembiasan.

Berdasarkan persamaan Bragg, jika seberkas sinar-X di jatuhkan pada sampel kristal, maka bidang kristal itu akan membiaskan sinar-X yang memiliki panjang gelombang sama dengan jarak antar kisi dalam kristal tersebut. Sinar yang dibiaskan akan ditangkap oleh detektor kemudian diterjemahkan sebagai sebuah puncak difraksi. Makin banyak bidang kristal yang terdapat dalam sampel, makin kuat intensitas pembiasan yang dihasilkannya.

Tiap puncak yang muncul pada pola XRD mewakili satu bidang kristal yang memiliki orientasi tertentu dalam sumbu tiga dimensi. Puncak-puncak yang didapatkan dari data pengukuran ini kemudian dicocokkan dengan standar difraksi sinar-X untuk hampir semua jenis material. Standar ini disebut JCPDS.

Keuntungan utama penggunaan sinar-X dalam karakterisasi material adalah kemampuan penetrasinya, sebab sinar-X memiliki energi sangat tinggi akibat panjang gelombangnya yang pendek. Sinar-X adalah gelombang elektromagnetik dengan panjang gelombang 0,5-2,0 mikron. Sinar ini dihasilkan dari penembakan logam dengan elektron berenergi tinggi. Elektron itu mengalami perlambatan saat masuk ke dalam logam dan menyebabkan elektron pada kulit atom logam tersebut terpental membentuk kekosongan.

Elektron dengan energi yang lebih tinggi masuk ke tempat kosong dengan memancarkan kelebihan energinya sebagai foton sinar-X.
Metode difraksi sinar X digunakan untuk mengetahui struktur dari lapisan tipis yang terbentuk. Sampel diletakkan pada sampel holder difraktometer sinar X. Proses difraksi sinar X dimulai dengan menyalakan difraktometer sehingga diperoleh hasil difraksi berupa difraktogram yang menyatakan hubungan antara sudut difraksi 2θ dengan intensitas sinar X yang dipantulkan. Untuk difraktometer sinar X, sinar X terpancar dari tabung sinar X. Sinar X didifraksikan dari sampel yang konvergen yang diterima slit dalam posisi simetris dengan respon ke fokus sinar X. Sinar X ini ditangkap oleh detektor sintilator dan diubah menjadi sinyal listrik. Sinyal tersebut, setelah dieliminasi komponen noisenya, dihitung sebagai analisa pulsa tinggi. Teknik difraksi sinar x juga digunakan untuk menentukan ukuran kristal, regangan kisi, komposisi kimia dan keadaan lain yang memiliki orde yang sama.

SUMBER DAN SIFAT SINAR X

Tabung sinar-X

Pada umumnya, sinar diciptakan dengan percepatan arus listrik, atau setara dengan transisi kuantum partikel dari satu energi state ke lainnya. Contoh : radio ( electron berosilasi di antenna) , lampu merkuri (transisi antara atom).  Ketika sebuah elektron menabrak anoda :

  1. Menabrak atom dengan kecepatan perlahan, dan menciptakan radiasi bremstrahlung atau panjang gelombang kontinyu
  2. Secara langsung menabrak atom dan menyebabkan terjadinya transisi menghasilkan panjang gelombang garis.

Sinar X merupakan radiasi elektromagnetik yang memiliki energi tinggi sekitar 200 eV sampai 1 MeV. Sinar X dihasilkan oleh interaksi antara berkas elektron eksternal dengan elektron pada kulit atom. Spektrum Sinar X memilki panjang gelombang 10-5 – 10 nm, berfrekuensi 1017 -1020 Hz dan memiliki energi 103 -106 eV. Panjang gelombang sinar X memiliki orde yang sama dengan jarak antar atom sehingga dapat digunakan sebagai sumber difraksi kristal.

Difraksi Sinar X merupakan teknik yang digunakan dalam karakteristik material untuk mendapatkan informasi tentang ukuran atom dari material kristal maupun nonkristal. Difraksi tergantung pada struktur kristal dan panjang gelombangnya. Jika panjang gelombang jauh lebih dari pada ukuran atom atau konstanta kisi kristal maka tidak akan terjadi peristiwa difraksi karena sinar akan dipantulkan sedangkan jika panjang gelombangnya mendekati atau lebih kecil dari ukuran atom atau kristal maka akan terjadi peristiwa difraksi. Ukuran atom dalam orde angstrom (Å) maka supaya terjadi peristiwa difraksi maka panjang gelombang dari sinar yang melalui kristal harus dalam orde angstrom (Å).
KOMPONEN DALAM XRD
Slit dan film

Monokromator

Sinar-X dihasilkan di suatu tabung sinar katode dengan pemanasan kawat pijar untuk menghasilkan elektron-elektron, kemudian electron-elektron tersebut dipercepat terhadap suatu target dengan memberikan suatu voltase, dan menembak target dengan elektron. Ketika elektron-elektron mempunyai energi yang cukup untuk mengeluarkan elektron-elektron dalam target, karakteristik spektrum sinar-X dihasilkan. Spektrum ini terdiri atas beberapa komponen-komponen, yang paling umum adalah Kα dan Kβ. Ka berisi, pada sebagian, dari Kα1 dan Kα2. Kα1 mempunyai panjang gelombang sedikit lebih pendek dan dua kali lebih intensitas dari Kα2. Panjang gelombang yang spesifik merupakan karakteristik dari bahan target (Cu, Fe, Mo, Cr). Disaring, oleh kertas perak atau kristal monochrometers, yang akan menghasilkan sinar-X monokromatik yang diperlukan untuk difraksi. Tembaga adalah bahan sasaran yang paling umum untuk diffraction kristal tunggal, dengan radiasi Cu Kα =05418Å. Sinar-X ini bersifat collimated dan mengarahkan ke sampel. Saat sampel dan detektor diputar, intensitas Sinar X pantul itu direkam. Ketika geometri dari peristiwa sinar-X tersebut memenuhi persamaan Bragg, interferens konstruktif terjadi dan suatu puncak di dalam intensitas terjadi. Detektor akan merekam dan memproses isyarat penyinaran ini dan mengkonversi isyarat itu menjadi suatu arus yang akan dikeluarkan pada printer atau layar komputer

X-ray powder diffractogram. Peak positions occur where the X-ray beam has been diffracted by the crystal lattice. The unique set of d-spacings derived from this patter can be used to ‘fingerprint’ the mineral. Image courtesy the USGS

Petunjuk penggunaaan,

  • Penyiapan sample

Ambil sepersepuluh berat sample (murni lebih baik).  Gerus sample dalam bentuk bubuk.  Ukuran kurang dari ~10 μm atau 200-mesh lebih disukai.  Letakkan dalam sample holder.

Harus diperhatikan agar mendapatkan permukaan yang datar dan mendapatkan distribusi acak dari orientasi-orientasi kisi.  Untuk analisa dari tanah liat yang memerlukan single orientasi, teknik-teknik yang khusus untuk persiapan tanah liat telah diberikan oleh USGS

  • Pengumpulan Data

Intensitas sinar-X yang didifraksikan secara terus-menerus direkam sebagai contoh dan detektor berputar melalui sudut mereka masing-masing. Sebuah puncak dalam intensitas terjadi ketika mineral berisi kisi-kisi dengan d-spacings sesuai dengan difraksi sinar-X pada nilai θ Meski masing-masing puncak terdiri dari dua pemantulan yang terpisah (Kα1 dan Kα2), pada nilai-nilai kecil dari 2 θ lokasi-lokasi puncak tumpang-tindih dengan Kα2 muncul sebagai suatu gundukan pada sisi Kα1. Pemisahan lebih besar terjadi pada nilai-nilai θ yang lebih tinggi.
KEGUNAAN DAN APLIKASI

Membedakan antara material yang bersifat kristal dengan amorf.

Membedakan antara material yang bersifat kristal dengan amorf.

Mengukur macam-macam keacakan dan penyimpangan kristal.

Karakterisasi material kristal

Identifikasi mineral-mineral yang berbutir halus seperti tanah liat

Penentuan dimensi-dimensi sel satuan

Dengan teknik-teknik yang khusus, XRD dapat digunakan untuk:

  1. Menentukan struktur kristal dengan menggunakan Rietveld refinement
  2. Analisis kuantitatif dari mineral
  3. Karakteristik sampel film

KEUNTUNGAN DAN KERUGIAN DARI XRD KRISTAL DAN BUBUK

Kristal Tunggal

Keuntungan

Kita dapat mempelajari struktur kristal tersebut.

Kerugian
Sangat sulit mendapatkan senyawa dalam bentuk kristalnya

Bubuk

Kerugian

Sulit untuk menentukan strukturnya

Keuntungan

Lebih mudah memperoleh senyawa dalam bentuk bubuk

KROMATOGRAFI

PENGERTIAN
Kromatografi adalah cara pemisahan campuran dengan berdasarkan kecepatan perambatan komponen dalam medium tertentu. Cara ini adalah cara yang umum digunakan dengan proses dinamis di mana ada fase yang bergerak dan ada fase yang diam. Fase bergerak bisa berupa gas atau cairan sedangkan fase diam dapat berupa butiran padatan atau butiran padatan berongga dan lapisan tipis cairan. fese diam ini yang akan menahan komponen campuran sehingga fase gerak yang akan melarutkan zat komponen. Pada fase diam komponen yang mudah tertahan akan tertinggal sedangkan untuk fase gerak maka komponennya akan mudah larut.
Jenis dari kromatografi ada 4 yaitu:
1. Gas chromatography
2. Liquid chromatography
3. Paper chromatography
4. Thin layer chromatography
1. Gas Chromatography
Kromatografi Gas adalah metode kromatografi pertama yang dikembangkan pada jaman instrument dan elektronika yang telah merevolusikan keilmuan selama lebih dari 30 tahun. Sekarang GC dipakai secara rutin di sebagian besar laboratorium industri dan perguruan inggi. GC dapat dipakai untuk setiap campuran yang komponennya atau akan lebih baik lagi jika semua komponennya mempunyai tekanan uap yang berarti pada suhu yang dipakai untuk pemisahan. Tekanan uap atau keatsirian memungkinkan komponen menguap danbergerak bersama-sama dengan fase gerak yang berupa gas. Pada kromatografi cair pembatasan yang bersesuaian ialah komponen cairan harus mempunyai kelarutan yang berarti didalam fase gerak yang berupa cairan. Secara sepintas tampaknya pembatasan tekanan uap pada kromatografi gas lebih serius daripada pembatasan kelarutan pada kromatografi cair, secara keseluruhan memang demikian. Akan tetapi, jika kita ingat bahwa suhu sampai 400¬0C dapat dipakai pada kromatografi gas dan bahwa kromatografi dilakukan secara cepat untuk meminimumkan penguraian, pembatasan itu menjadi tidak begitu perlu. Disamping itu, pada KG, senyawa yang tak atsiri sering dapat dibah menjadi turunan yang lebih atsiri dan lebih stabil sebelum kromatografi.
Dalam kromatografi gas, fase bergeraknya adalah gas dan zat terlarut terpisah sebagai uap. Pemisahan tercapai dengan partisi sampel antara fase gas bergerak dan fase diam berupa cairan dengan titik didih tinggi (tidak mudah menguap) yang terikat pada zat padat penunjangnya.
Ada beberapa kelebihan kromatografi gas, diantaranya kita dapat menggunakan kolom lebih panjang untuk menghasilkan efisiensi pemisahan yang tinggi. Gs dan uap mempunyai viskositas yang rendah, demikian juga kesetimbangan partisi antara gas dan cairan berlangsung cepat, sehingga analisis relative cepat dan sensitifitasnya tinggi. Fase gas dibandingkan sebagian besar fase cair tidak bersifat reaktif terhadap fase diam dan zat-zat terlarut. Kelemahannya adalah tehnik ini terbatas untuk zat yang mudah menguap.
Kromatografi gas merupakan metode yang tepat dan cepat untuk memisahkan campuran yang sangat rumit. Waktu yang dibutuhkan beragam, mulai dari beberapa detik utnuk campuran sederhana sampai berjam-jam untuk campuran yang mengandung 500-1000 komponen. Komponen campuran dapat diidentifikasikan dengan menggunakan waktu tambat (waktu retensi) yang khas pada kondisi yang tepat. Waktu tambat ialah waktu yang menunjukkan berapa lama suatu senyawa tertahan dalam kolom.waktu tambat diukur dari jejak pencatat pada kromatogram dan serupa dengan volumetambat dalam KCKT dan Rf dalam KLT. Dengan kalibrasi yang patut, banyaknya (kuantitas) komponen campuran dapat pula diukur secara teliti . kekurangan utama KG adalah bahwa ia tidak mudah dipakai untuk memisahkan campuran dalam jumlah besar. Pemisahan pada tingkat mg mudah dilakukan, pemisahan campuran pada tingkat g mungkin dilakukan; tetapi pemisahan dalam tingkat pon atau ton sukar dilakukan kecuali jika tidak ada metode lain. Pada KG dan KCKT, kolom dapat dipakai kembali dan jika dirawat dengan baik dapat tahan lama. Perawatan harus dilakukan karena kolom dapat sangat mahal.
Fase diam pada KG biasanya berupa cairan yang disaputkan pada bahan penyangga padat yang lembab , bukan senyawa padat yang berfungsi sebagai permukaan yang menyerap (kromatografi gas-padat). Sistem gas-padat telah dipakai secara luas dalam pemurnian gas dan penghilangan asap, tetapi kurang kegunaannya dalam kromatografi. Pemakaian fase cair memungkinkan kita memilih dari sejumlah fase diam yang sangat beragam yang akan memisahkan hampir segala macam campuran.
Satu-satunya pembatas pada pemilihan cairan yang demikian ialah bahwa zat cair itu harus stabil dan tidak atsiri pada kondisi kromatografi. Akan tetapi, keadaan ini berubah akibat pengembangan fase terikat dan pemakaian kolo kapiler atau kolom tabung terbuka yang sangat efisien. Pada fase terikat, cairan sebenarnya terikat pada penyangga padat atau pada dinding koplom kapiler, tidak hanya disaputkan begitu saja.
Pemakaian detector untuk menganalisis efluen kromatograf secara sinambung telah memungkinkan adanya KG dan KCKT. Pada KG, tersedianya berbagai detector, pemakaiannya yang umum untuk banyak jenis senyawa, dan tingkat kepekaannya yang tinggi telah memungkinkan penentuan secara teliti berbagai jenis komponen dalam kisaran yang besar, kadang-kadang dalam jumlah yang sangat kecil. Tersedianya detector selektif, misalnya detector yang hanya mendeteksi senyawa yang mengandung P, N, atau S merupakan hal yang sangat penting pula. Ini berbeda dengan KCKT yang hanya menyediakan lebih sedikit jenis detector dan kurang peka.

2. Liquid Chromatography
Kromatografi Cair adalah sebuah teknik pemisahan kromatografi di mana mobile fase cair (biasanya satu pelarut atau campuran pelarut biner sederhana) dan fase stasioner juga cair (yang harus tidak bercampur dan tidak larut dalam cairan mobile fase). Fase diam cair didukung pada beberapa bahan yang sesuai seperti diatomaceous bumi atau dalam keadaan tertentu silika gel. Sistem secara inheren tidak stabil, sebagai fase stasioner akan selalu memiliki kelarutan dalam tahap selular dan, sebagai akibatnya, pada akhirnya akan dilepas dari dukungan Pertama sistem cair-cair dilaporkan oleh AJP Martin yang didukung air yang digunakan silika gel sebagai fase diam dan n-heptan sebagai fase bergerak. Untuk menghindari ketidakstabilan sistem cair-cair, fase terikat dikembangkan yang secara ketat sistem cair-padat, tetapi sebagai moieties terikat sangat besar, berperilaku dalam cara yang sangat mirip dengan sistem cair-cair. Sebagai isotherms penyerapan cair-cair sistem linier sampai konsentrasi terlarut relatif tinggi, beban yang relatif besar dapat diterapkan ke kolom cair-cair. Cair-cair sistem, dengan demikian, tidak umum digunakan dalam kromatografi cair modern.
3. Paper chromatography
Prosedur pemisahan zat terlarut oleh suatu proses migrasi diferensial dinamis dalam sistem yang terdiri dari dua fase atau lebih, salah satu diantaranya bergerak secara berkesinambungan dalam arah tertentu dan di dalamnya zat-zat itu menunjukkan perbedaan mobilitas disebabkan adanya perbedaan dalam absorpsi, partisi, kelarutan, tekanan uap, ukuran molekul atau kerapatan muatan ion dinamakan kromatografi sehingga masing-masing zat dapat diidentifikasi atau ditetapkan dengan metode analitik .
Pada dasarnya, teknik kromatografi ini membutuhkan zat terlarut terdistribusi di antara dua fase, satu diantaranya diam (fase diam), yang lainnya bergerak (fase gerak). Fase gerak membawa zat terlarut melalui media, hingga terpisah dari zat terlarut lainnya yang tereluasi lebih awal atau lebih akhir. Umumnya zat terlarut dibawa melewati media pemisah oleh cairan atau gas yang disebut eluen. Fase diam dapat bertindak sebagai zat penyerap atau dapat betindak melarutkan zat terlarut sehingga terjadi partisi antara fase diam dan fase gerak.
Pada kromatografi kertas sebagai penyerap digunakan sehelai kertas dengan susunan serabut dan tebal yang sesuai. Pemisahan kromatografi dapat berlangsung menggunakan fase cair tunggal dengan proses yang sama dengan kromatografi adsorpsi dalam kolom. Oleh karena kandungan air pada kertas, atau inhibisi selektif dari komponen hidrofilik fase cair oleh serat kertasnya, dapat dianggap sebagai fase diam, maka mekanisme partisi beperan penting dalam pemisahan.
Susunan serat kertas membentuk medium berpori yang bertindak sebagai tempat untuk mengalirkannya fase bergerak. Berbagai macam tempat kertas secara komersil tersedia adalah whatman 1, 2, 31 dan 3 MM. Kertas asam asetil, kertas kieselguhr, kertas silikon dan kertas penukar ion juga digunakan. Kertas asam asetil dapat digunakan untuk zat – zat hidrofobik. Untuk memilih kertas yang menjadi pertimbangan adalah tingkat kesempurnaan pemisahan, difusitas pembentukan spot, efek tailing dan pembentuk komet serta laju pergerakan untuk teknik descending.
Kromatogram dibuat dengan menotolkan larutan uji, larutan baku pembanding, dan suatu campuran uji dan baku pebaning dalam jumlah yang kurang lebih sama pada penyerap, dalam satu garis lurus sejajar dengan tepi lempeng atau kertas. Jika zat uji yang diidentifikasi dan baku pembanding itu sama, terdapat kesesuaian dalam warna dan harga Rf pada semua kromatogram, dan kromatogram dari campuran menghasilkan bercak tunggal, yaitu harga Rr adalah 1,0.
Penetapan letak bercak yang dihailkan kromatografi kertas atau lapis tipis letaknya dapat ditetapkan dengan: (1) pengamatan langsung jika senyawa tampak pada cahaya biasa, cahaya ultra violet gelombang pendek (254 nm) atau gelombang panjang (366 nm), (2) pengamatan dengan cahaya biasa atau ultra violet setelah disemprot dengan pereaksi yang membuat bercak tersebut tampak, (3) menggunakan pencacah Geiger-Muller atau teknik autoradiografi, jika terdapat zat radioaktif, (4) menempatan potongan penyerap dan zat pada media pembiakan yang telah ditanami untuk meihat hasil stimulasi atau hambatan pertumbuhan bakteri (Anonim, 1995).
Penyimpangan harga Rr, Rf, atau t, yang diukur untuk zat uji dari harga yang diperoleh untuk baku pembanding dan campuran tidak boleh melampaui taksiran keandaln yang ditentukan secara statistik dari penetapan kadar baku pembanding secara berulang. Perbedaan harga Rf, bila kromatogram dikembangkan searah serat kertas, dibandingkan dengan yang dikembangkan dengan arah tegak lurus terhadap serat ketas. Oleh karen itu, dalam suatu seri kromatogram, arah perambatan pelarut harus dipertahankan tetap terhadap arah serat kertas.
Pada kromatografi menurun, pada fase gerak dibiarkan merabat turun pada kertas. Kertas tersebut digantung dalam bejana menggunakan bahan antisifon yang menahan ujung atas kertas di dalam bak pelarut. Dasar bejana digenangi dengan sistem pelarut yang telah ditetapkan. Pada kromatografi kertas yang menaik, kertas itu digantung dari atas ruangan agar kertas tersebut tercelup ke dalam larutan yang ada di dasar ruangan, dan pelarut akan merangkak naik di seluruh bagian kertas secara perlahan-lahan akibat kapilaritas. Pada bentuk yang menurun, kertas dikaitkan pada sebuah cawan yang mengandung pelarut yang terletak diatas ruangan, dan pelarut bergerak ke bawah karena adanya kapilaritas yang dibantu gravitasi. Pada kasus yang sukses, zat terlarut dari campuran yang asli akan bergerak di sepanjang kertas dengan kecepatan yang berbeda-beda, membentuk sederetan noda yang terpisah. Jika senyawa tersebut berwarna, tentu saja noda tersebut dapat terlihat. Jika tidak, noda-noda tersebut harus ditemukan dengan cara lain. Beberapa senyawa berpendar, dalam kasus ini noda-noda bersinar dapat dilihat pada saat kertas diletakkan di bawah lampu ultraviolet.
4. Thin Layer Chromatography
Kromatografi Lapis Tipis (KLT) merupakan cara pemisahan campuran senyawa menjadi senyawa murninya dan mengetahui kuantitasnya yang menggunakan. Kromatografi juga merupakan analisis cepat yang memerlukan bahan sangat sedikit, baik penyerap maupun cuplikannya yag dapat digunakan untuk memisahkan senyawa – senyawa yang sifatnya hidrofobik seperti lipida – lipida dan hidrokarbon yang sukar dikerjakan dengan kromatografi kertas.
Pelaksanaan kromatografi lapis tipis bisa digunakan dengan kromatogram atau perhitungan Rf atau pengidentifikasian senyawa-senyawa. Pelaksanaan kromatografi biasanya digunakan dalam pemisahan pewarna yang merupakan sebuah campuran dari beberapa zat pewarna. Jumlah perbedaan warna yang telah terbentuk dari campuran, pengukuran diperoleh dari lempengan untuk memudahkan identifikasi senyawa-senyawa yang muncul. Tidak diperlukan menghitung nilai Rf karena anda dengan mudah dapat membandingkan bercak-bercak pada campuran dengan bercak dari asam amino yang telah diketahui melalui posisi dan warnanya.
Jika kromatografi lapis tipis yang akan dideteksi pada substansi tidak berwarna dilakukan dengan cara pendaflour dan bercak secara kimia. fase diam pada sebuah lempengan lapis tipis seringkali memiliki substansi yang ditambahkan kedalamnya, supaya menghasilkan pendaran flour ketika diberikan sinar ultraviolet (UV). Itu berarti jika menyinarkannya dengan sinar UV, akan berpendar. Untuk membuat bercak-bercak menjadi tampak dengan jalan mereaksikannya dengan zat kimia sehingga menghasilkan produk yang berwarna

Hello world!

Welcome to WordPress.com. After you read this, you should delete and write your own post, with a new title above. Or hit Add New on the left (of the admin dashboard) to start a fresh post.

Here are some suggestions for your first post.

  1. You can find new ideas for what to blog about by reading the Daily Post.
  2. Add PressThis to your browser. It creates a new blog post for you about any interesting  page you read on the web.
  3. Make some changes to this page, and then hit preview on the right. You can alway preview any post or edit you before you share it to the world.